批量转换
In [ ]
已复制!
import json
import logging
import time
from collections.abc import Iterable
from pathlib import Path
import json import logging import time from collections.abc import Iterable from pathlib import Path
In [ ]
已复制!
import yaml
from docling_core.types.doc import ImageRefMode
import yaml from docling_core.types.doc import ImageRefMode
In [ ]
已复制!
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend from docling.datamodel.base_models import ConversionStatus, InputFormat from docling.datamodel.document import ConversionResult from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.document_converter import DocumentConverter, PdfFormatOption
In [ ]
已复制!
_log = logging.getLogger(__name__)
_log = logging.getLogger(__name__)
In [ ]
已复制!
USE_V2 = True
USE_LEGACY = False
USE_V2 = True USE_LEGACY = False
In [ ]
已复制!
def export_documents(
conv_results: Iterable[ConversionResult],
output_dir: Path,
):
output_dir.mkdir(parents=True, exist_ok=True)
success_count = 0
failure_count = 0
partial_success_count = 0
for conv_res in conv_results:
if conv_res.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = conv_res.input.file.stem
if USE_V2:
conv_res.document.save_as_json(
output_dir / f"{doc_filename}.json",
image_mode=ImageRefMode.PLACEHOLDER,
)
conv_res.document.save_as_html(
output_dir / f"{doc_filename}.html",
image_mode=ImageRefMode.EMBEDDED,
)
conv_res.document.save_as_document_tokens(
output_dir / f"{doc_filename}.doctags.txt"
)
conv_res.document.save_as_markdown(
output_dir / f"{doc_filename}.md",
image_mode=ImageRefMode.PLACEHOLDER,
)
conv_res.document.save_as_markdown(
output_dir / f"{doc_filename}.txt",
image_mode=ImageRefMode.PLACEHOLDER,
strict_text=True,
)
# Export Docling document format to YAML:
with (output_dir / f"{doc_filename}.yaml").open("w") as fp:
fp.write(yaml.safe_dump(conv_res.document.export_to_dict()))
# Export Docling document format to doctags:
with (output_dir / f"{doc_filename}.doctags.txt").open("w") as fp:
fp.write(conv_res.document.export_to_document_tokens())
# Export Docling document format to markdown:
with (output_dir / f"{doc_filename}.md").open("w") as fp:
fp.write(conv_res.document.export_to_markdown())
# Export Docling document format to text:
with (output_dir / f"{doc_filename}.txt").open("w") as fp:
fp.write(conv_res.document.export_to_markdown(strict_text=True))
if USE_LEGACY:
# Export Deep Search document JSON format:
with (output_dir / f"{doc_filename}.legacy.json").open(
"w", encoding="utf-8"
) as fp:
fp.write(json.dumps(conv_res.legacy_document.export_to_dict()))
# Export Text format:
with (output_dir / f"{doc_filename}.legacy.txt").open(
"w", encoding="utf-8"
) as fp:
fp.write(
conv_res.legacy_document.export_to_markdown(strict_text=True)
)
# Export Markdown format:
with (output_dir / f"{doc_filename}.legacy.md").open(
"w", encoding="utf-8"
) as fp:
fp.write(conv_res.legacy_document.export_to_markdown())
# Export Document Tags format:
with (output_dir / f"{doc_filename}.legacy.doctags.txt").open(
"w", encoding="utf-8"
) as fp:
fp.write(conv_res.legacy_document.export_to_document_tokens())
elif conv_res.status == ConversionStatus.PARTIAL_SUCCESS:
_log.info(
f"Document {conv_res.input.file} was partially converted with the following errors:"
)
for item in conv_res.errors:
_log.info(f"\t{item.error_message}")
partial_success_count += 1
else:
_log.info(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
_log.info(
f"Processed {success_count + partial_success_count + failure_count} docs, "
f"of which {failure_count} failed "
f"and {partial_success_count} were partially converted."
)
return success_count, partial_success_count, failure_count
def export_documents( conv_results: Iterable[ConversionResult], output_dir: Path, ): output_dir.mkdir(parents=True, exist_ok=True) success_count = 0 failure_count = 0 partial_success_count = 0 for conv_res in conv_results: if conv_res.status == ConversionStatus.SUCCESS: success_count += 1 doc_filename = conv_res.input.file.stem if USE_V2: conv_res.document.save_as_json( output_dir / f"{doc_filename}.json", image_mode=ImageRefMode.PLACEHOLDER, ) conv_res.document.save_as_html( output_dir / f"{doc_filename}.html", image_mode=ImageRefMode.EMBEDDED, ) conv_res.document.save_as_document_tokens( output_dir / f"{doc_filename}.doctags.txt" ) conv_res.document.save_as_markdown( output_dir / f"{doc_filename}.md", image_mode=ImageRefMode.PLACEHOLDER, ) conv_res.document.save_as_markdown( output_dir / f"{doc_filename}.txt", image_mode=ImageRefMode.PLACEHOLDER, strict_text=True, ) # Export Docling document format to YAML: with (output_dir / f"{doc_filename}.yaml").open("w") as fp: fp.write(yaml.safe_dump(conv_res.document.export_to_dict())) # Export Docling document format to doctags: with (output_dir / f"{doc_filename}.doctags.txt").open("w") as fp: fp.write(conv_res.document.export_to_document_tokens()) # Export Docling document format to markdown: with (output_dir / f"{doc_filename}.md").open("w") as fp: fp.write(conv_res.document.export_to_markdown()) # Export Docling document format to text: with (output_dir / f"{doc_filename}.txt").open("w") as fp: fp.write(conv_res.document.export_to_markdown(strict_text=True)) if USE_LEGACY: # Export Deep Search document JSON format: with (output_dir / f"{doc_filename}.legacy.json").open( "w", encoding="utf-8" ) as fp: fp.write(json.dumps(conv_res.legacy_document.export_to_dict())) # Export Text format: with (output_dir / f"{doc_filename}.legacy.txt").open( "w", encoding="utf-8" ) as fp: fp.write( conv_res.legacy_document.export_to_markdown(strict_text=True) ) # Export Markdown format: with (output_dir / f"{doc_filename}.legacy.md").open( "w", encoding="utf-8" ) as fp: fp.write(conv_res.legacy_document.export_to_markdown()) # Export Document Tags format: with (output_dir / f"{doc_filename}.legacy.doctags.txt").open( "w", encoding="utf-8" ) as fp: fp.write(conv_res.legacy_document.export_to_document_tokens()) elif conv_res.status == ConversionStatus.PARTIAL_SUCCESS: _log.info( f"Document {conv_res.input.file} was partially converted with the following errors:" ) for item in conv_res.errors: _log.info(f"\t{item.error_message}") partial_success_count += 1 else: _log.info(f"Document {conv_res.input.file} failed to convert.") failure_count += 1 _log.info( f"Processed {success_count + partial_success_count + failure_count} docs, " f"of which {failure_count} failed " f"and {partial_success_count} were partially converted." ) return success_count, partial_success_count, failure_count
In [ ]
已复制!
def main():
logging.basicConfig(level=logging.INFO)
input_doc_paths = [
Path("./tests/data/pdf/2206.01062.pdf"),
Path("./tests/data/pdf/2203.01017v2.pdf"),
Path("./tests/data/pdf/2305.03393v1.pdf"),
Path("./tests/data/pdf/redp5110_sampled.pdf"),
]
# buf = BytesIO(Path("./test/data/2206.01062.pdf").open("rb").read())
# docs = [DocumentStream(name="my_doc.pdf", stream=buf)]
# input = DocumentConversionInput.from_streams(docs)
# # Turn on inline debug visualizations:
# settings.debug.visualize_layout = True
# settings.debug.visualize_ocr = True
# settings.debug.visualize_tables = True
# settings.debug.visualize_cells = True
pipeline_options = PdfPipelineOptions()
pipeline_options.generate_page_images = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options, backend=DoclingParseV4DocumentBackend
)
}
)
start_time = time.time()
conv_results = doc_converter.convert_all(
input_doc_paths,
raises_on_error=False, # to let conversion run through all and examine results at the end
)
success_count, partial_success_count, failure_count = export_documents(
conv_results, output_dir=Path("scratch")
)
end_time = time.time() - start_time
_log.info(f"Document conversion complete in {end_time:.2f} seconds.")
if failure_count > 0:
raise RuntimeError(
f"The example failed converting {failure_count} on {len(input_doc_paths)}."
)
def main(): logging.basicConfig(level=logging.INFO) input_doc_paths = [ Path("./tests/data/pdf/2206.01062.pdf"), Path("./tests/data/pdf/2203.01017v2.pdf"), Path("./tests/data/pdf/2305.03393v1.pdf"), Path("./tests/data/pdf/redp5110_sampled.pdf"), ] # buf = BytesIO(Path("./test/data/2206.01062.pdf").open("rb").read()) # docs = [DocumentStream(name="my_doc.pdf", stream=buf)] # input = DocumentConversionInput.from_streams(docs) # # Turn on inline debug visualizations: # settings.debug.visualize_layout = True # settings.debug.visualize_ocr = True # settings.debug.visualize_tables = True # settings.debug.visualize_cells = True pipeline_options = PdfPipelineOptions() pipeline_options.generate_page_images = True doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_options=pipeline_options, backend=DoclingParseV4DocumentBackend ) } ) start_time = time.time() conv_results = doc_converter.convert_all( input_doc_paths, raises_on_error=False, # to let conversion run through all and examine results at the end ) success_count, partial_success_count, failure_count = export_documents( conv_results, output_dir=Path("scratch") ) end_time = time.time() - start_time _log.info(f"Document conversion complete in {end_time:.2f} seconds.") if failure_count > 0: raise RuntimeError( f"The example failed converting {failure_count} on {len(input_doc_paths)}." )
In [ ]
已复制!
if __name__ == "__main__":
main()
if __name__ == "__main__": main()