公式增强
警告 本示例仅演示如何开发新的增强模型。它不运行实际的公式理解模型。
In [ ]
已复制!
import logging
from collections.abc import Iterable
from pathlib import Path
import logging from collections.abc import Iterable from pathlib import Path
In [ ]
已复制!
from docling_core.types.doc import DocItemLabel, DoclingDocument, NodeItem, TextItem
from docling_core.types.doc import DocItemLabel, DoclingDocument, NodeItem, TextItem
In [ ]
已复制!
from docling.datamodel.base_models import InputFormat, ItemAndImageEnrichmentElement
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.models.base_model import BaseItemAndImageEnrichmentModel
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
from docling.datamodel.base_models import InputFormat, ItemAndImageEnrichmentElement from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.document_converter import DocumentConverter, PdfFormatOption from docling.models.base_model import BaseItemAndImageEnrichmentModel from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
In [ ]
已复制!
class ExampleFormulaUnderstandingPipelineOptions(PdfPipelineOptions):
do_formula_understanding: bool = True
class ExampleFormulaUnderstandingPipelineOptions(PdfPipelineOptions): do_formula_understanding: bool = True
In [ ]
已复制!
# A new enrichment model using both the document element and its image as input
class ExampleFormulaUnderstandingEnrichmentModel(BaseItemAndImageEnrichmentModel):
images_scale = 2.6
def __init__(self, enabled: bool):
self.enabled = enabled
def is_processable(self, doc: DoclingDocument, element: NodeItem) -> bool:
return (
self.enabled
and isinstance(element, TextItem)
and element.label == DocItemLabel.FORMULA
)
def __call__(
self,
doc: DoclingDocument,
element_batch: Iterable[ItemAndImageEnrichmentElement],
) -> Iterable[NodeItem]:
if not self.enabled:
return
for enrich_element in element_batch:
enrich_element.image.show()
yield enrich_element.item
# 一个使用文档元素及其图像作为输入的新增强模型 class ExampleFormulaUnderstandingEnrichmentModel(BaseItemAndImageEnrichmentModel): images_scale = 2.6 def __init__(self, enabled: bool): self.enabled = enabled def is_processable(self, doc: DoclingDocument, element: NodeItem) -> bool: return ( self.enabled and isinstance(element, TextItem) and element.label == DocItemLabel.FORMULA ) def __call__( self, doc: DoclingDocument, element_batch: Iterable[ItemAndImageEnrichmentElement], ) -> Iterable[NodeItem]: if not self.enabled: return for enrich_element in element_batch: enrich_element.image.show() yield enrich_element.item
In [ ]
已复制!
# How the pipeline can be extended.
class ExampleFormulaUnderstandingPipeline(StandardPdfPipeline):
def __init__(self, pipeline_options: ExampleFormulaUnderstandingPipelineOptions):
super().__init__(pipeline_options)
self.pipeline_options: ExampleFormulaUnderstandingPipelineOptions
self.enrichment_pipe = [
ExampleFormulaUnderstandingEnrichmentModel(
enabled=self.pipeline_options.do_formula_understanding
)
]
if self.pipeline_options.do_formula_understanding:
self.keep_backend = True
@classmethod
def get_default_options(cls) -> ExampleFormulaUnderstandingPipelineOptions:
return ExampleFormulaUnderstandingPipelineOptions()
# 如何扩展流水线 class ExampleFormulaUnderstandingPipeline(StandardPdfPipeline): def __init__(self, pipeline_options: ExampleFormulaUnderstandingPipelineOptions): super().__init__(pipeline_options) self.pipeline_options: ExampleFormulaUnderstandingPipelineOptions self.enrichment_pipe = [ ExampleFormulaUnderstandingEnrichmentModel( enabled=self.pipeline_options.do_formula_understanding ) ] if self.pipeline_options.do_formula_understanding: self.keep_backend = True @classmethod def get_default_options(cls) -> ExampleFormulaUnderstandingPipelineOptions: return ExampleFormulaUnderstandingPipelineOptions()
In [ ]
已复制!
# Example main. In the final version, we simply have to set do_formula_understanding to true.
def main():
logging.basicConfig(level=logging.INFO)
input_doc_path = Path("./tests/data/pdf/2203.01017v2.pdf")
pipeline_options = ExampleFormulaUnderstandingPipelineOptions()
pipeline_options.do_formula_understanding = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=ExampleFormulaUnderstandingPipeline,
pipeline_options=pipeline_options,
)
}
)
doc_converter.convert(input_doc_path)
# 示例 main。在最终版本中,我们只需将 do_formula_understanding 设置为 true。 def main(): logging.basicConfig(level=logging.INFO) input_doc_path = Path("./tests/data/pdf/2203.01017v2.pdf") pipeline_options = ExampleFormulaUnderstandingPipelineOptions() pipeline_options.do_formula_understanding = True doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=ExampleFormulaUnderstandingPipeline, pipeline_options=pipeline_options, ) } ) doc_converter.convert(input_doc_path)
In [ ]
已复制!
if __name__ == "__main__":
main()
if __name__ == "__main__": main()