多模态导出
输入 [ ]
已复制!
import datetime
import logging
import time
from pathlib import Path
import datetime import logging import time from pathlib import Path
输入 [ ]
已复制!
import pandas as pd
import pandas as pd
输入 [ ]
已复制!
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.utils.export import generate_multimodal_pages
from docling.utils.utils import create_hash
from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.document_converter import DocumentConverter, PdfFormatOption from docling.utils.export import generate_multimodal_pages from docling.utils.utils import create_hash
输入 [ ]
已复制!
_log = logging.getLogger(__name__)
_log = logging.getLogger(__name__)
输入 [ ]
已复制!
IMAGE_RESOLUTION_SCALE = 2.0
IMAGE_RESOLUTION_SCALE = 2.0
输入 [ ]
已复制!
def main():
logging.basicConfig(level=logging.INFO)
input_doc_path = Path("./tests/data/pdf/2206.01062.pdf")
output_dir = Path("scratch")
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory.
# This is done by setting AssembleOptions.images_scale, which also defines the scale of images.
# scale=1 correspond of a standard 72 DPI image
pipeline_options = PdfPipelineOptions()
pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
pipeline_options.generate_page_images = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
start_time = time.time()
conv_res = doc_converter.convert(input_doc_path)
output_dir.mkdir(parents=True, exist_ok=True)
rows = []
for (
content_text,
content_md,
content_dt,
page_cells,
page_segments,
page,
) in generate_multimodal_pages(conv_res):
dpi = page._default_image_scale * 72
rows.append(
{
"document": conv_res.input.file.name,
"hash": conv_res.input.document_hash,
"page_hash": create_hash(
conv_res.input.document_hash + ":" + str(page.page_no - 1)
),
"image": {
"width": page.image.width,
"height": page.image.height,
"bytes": page.image.tobytes(),
},
"cells": page_cells,
"contents": content_text,
"contents_md": content_md,
"contents_dt": content_dt,
"segments": page_segments,
"extra": {
"page_num": page.page_no + 1,
"width_in_points": page.size.width,
"height_in_points": page.size.height,
"dpi": dpi,
},
}
)
# Generate one parquet from all documents
df_result = pd.json_normalize(rows)
now = datetime.datetime.now()
output_filename = output_dir / f"multimodal_{now:%Y-%m-%d_%H%M%S}.parquet"
df_result.to_parquet(output_filename)
end_time = time.time() - start_time
_log.info(
f"Document converted and multimodal pages generated in {end_time:.2f} seconds."
)
# This block demonstrates how the file can be opened with the HF datasets library
# from datasets import Dataset
# from PIL import Image
# multimodal_df = pd.read_parquet(output_filename)
# # Convert pandas DataFrame to Hugging Face Dataset and load bytes into image
# dataset = Dataset.from_pandas(multimodal_df)
# def transforms(examples):
# examples["image"] = Image.frombytes('RGB', (examples["image.width"], examples["image.height"]), examples["image.bytes"], 'raw')
# return examples
# dataset = dataset.map(transforms)
def main(): logging.basicConfig(level=logging.INFO) input_doc_path = Path("./tests/data/pdf/2206.01062.pdf") output_dir = Path("scratch") # Important: For operating with page images, we must keep them, otherwise the DocumentConverter # will destroy them for cleaning up memory. # This is done by setting AssembleOptions.images_scale, which also defines the scale of images. # scale=1 correspond of a standard 72 DPI image pipeline_options = PdfPipelineOptions() pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE pipeline_options.generate_page_images = True doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) } ) start_time = time.time() conv_res = doc_converter.convert(input_doc_path) output_dir.mkdir(parents=True, exist_ok=True) rows = [] for ( content_text, content_md, content_dt, page_cells, page_segments, page, ) in generate_multimodal_pages(conv_res): dpi = page._default_image_scale * 72 rows.append( { "document": conv_res.input.file.name, "hash": conv_res.input.document_hash, "page_hash": create_hash( conv_res.input.document_hash + ":" + str(page.page_no - 1) ), "image": { "width": page.image.width, "height": page.image.height, "bytes": page.image.tobytes(), }, "cells": page_cells, "contents": content_text, "contents_md": content_md, "contents_dt": content_dt, "segments": page_segments, "extra": { "page_num": page.page_no + 1, "width_in_points": page.size.width, "height_in_points": page.size.height, "dpi": dpi, }, } ) # Generate one parquet from all documents df_result = pd.json_normalize(rows) now = datetime.datetime.now() output_filename = output_dir / f"multimodal_{now:%Y-%m-%d_%H%M%S}.parquet" df_result.to_parquet(output_filename) end_time = time.time() - start_time _log.info( f"Document converted and multimodal pages generated in {end_time:.2f} seconds." ) # This block demonstrates how the file can be opened with the HF datasets library # from datasets import Dataset # from PIL import Image # multimodal_df = pd.read_parquet(output_filename) # # Convert pandas DataFrame to Hugging Face Dataset and load bytes into image # dataset = Dataset.from_pandas(multimodal_df) # def transforms(examples): # examples["image"] = Image.frombytes('RGB', (examples["image.width"], examples["image.height"]), examples["image.bytes"], 'raw') # return examples # dataset = dataset.map(transforms)
输入 [ ]
已复制!
if __name__ == "__main__":
main()
if __name__ == "__main__": main()