In [ ]
已复制!
import json
import time
from pathlib import Path
import json import time from pathlib import Path
In [ ]
已复制!
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
from docling_core.types.doc import DocItemLabel, ImageRefMode from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
In [ ]
已复制!
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
VlmPipelineOptions,
smoldocling_vlm_mlx_conversion_options,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import ( VlmPipelineOptions, smoldocling_vlm_mlx_conversion_options, ) from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.vlm_pipeline import VlmPipeline
In [ ]
已复制!
sources = [
# "tests/data/2305.03393v1-pg9-img.png",
"tests/data/pdf/2305.03393v1-pg9.pdf",
]
sources = [ # "tests/data/2305.03393v1-pg9-img.png", "tests/data/pdf/2305.03393v1-pg9.pdf", ]
In [ ]
已复制!
## Use experimental VlmPipeline
pipeline_options = VlmPipelineOptions()
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
## 使用 experimental VlmPipeline pipeline_options = VlmPipelineOptions() # 如果 force_backend_text = True,将使用来自后端的文本而不是生成的文本 pipeline_options.force_backend_text = False
在 GPU 系统上,通过 CUDA 启用 flash_attention_2:¶
pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
选择一个 VLM 模型。默认选择 SmolDocling-256M¶
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
In [ ]
已复制!
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
## 选择一个 VLM 模型。通过 MLX 实现的适用于 Apple Silicon 的 SmolDocling-256M 快速实现 pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
备选 VLM 模型:¶
pipeline_options.vlm_options = granite_vision_vlm_conversion_options
In [ ]
已复制!
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
}
)
## 为 PDF 或图像输入设置流水线 converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=VlmPipeline, pipeline_options=pipeline_options, ), InputFormat.IMAGE: PdfFormatOption( pipeline_cls=VlmPipeline, pipeline_options=pipeline_options, ), } )
In [ ]
已复制!
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
out_path = Path("scratch") out_path.mkdir(parents=True, exist_ok=True)
In [ ]
已复制!
for source in sources:
start_time = time.time()
print("================================================")
print(f"Processing... {source}")
print("================================================")
print("")
res = converter.convert(source)
print("")
print(res.document.export_to_markdown())
for page in res.pages:
print("")
print("Predicted page in DOCTAGS:")
print(page.predictions.vlm_response.text)
res.document.save_as_html(
filename=Path(f"{out_path}/{res.input.file.stem}.html"),
image_mode=ImageRefMode.REFERENCED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
)
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
res.document.save_as_json(
out_path / f"{res.input.file.stem}.json",
image_mode=ImageRefMode.PLACEHOLDER,
)
res.document.save_as_markdown(
out_path / f"{res.input.file.stem}.md",
image_mode=ImageRefMode.PLACEHOLDER,
)
pg_num = res.document.num_pages()
print("")
inference_time = time.time() - start_time
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
for source in sources: start_time = time.time() print("================================================") print(f"正在处理... {source}") print("================================================") print("") res = converter.convert(source) print("") print(res.document.export_to_markdown()) for page in res.pages: print("") print("DOCTAGS 中的预测页面:") print(page.predictions.vlm_response.text) res.document.save_as_html( filename=Path(f"{out_path}/{res.input.file.stem}.html"), image_mode=ImageRefMode.REFERENCED, labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE], ) with (out_path / f"{res.input.file.stem}.json").open("w") as fp: fp.write(json.dumps(res.document.export_to_dict())) res.document.save_as_json( out_path / f"{res.input.file.stem}.json", image_mode=ImageRefMode.PLACEHOLDER, ) res.document.save_as_markdown( out_path / f"{res.input.file.stem}.md", image_mode=ImageRefMode.PLACEHOLDER, ) pg_num = res.document.num_pages() print("") inference_time = time.time() - start_time print( f"总文档预测时间:{inference_time:.2f} 秒,页数:{pg_num}" )
In [ ]
已复制!
print("================================================")
print("done!")
print("================================================")
print("================================================") print("完成!") print("================================================")